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Abstract-We consider the non-linear normal modes for finite amplitude vibrations of a cantilever
beam by using an extension of the invariant manifold techniques recently developed by the authors.
Detailed results from two examples are presented. The first considers non-linearities which arise
from finite deformations, including inertial non-linearities. In this case it is shown that if one simply
accounts for the kinematic effects of foreshortening, the linear modes of the cantilever beam work
remarkably well for describing the actual non-linear mode shapes of the beam up to quite large
amplitudes. A second example demonstrates the manner in which the method handles non-linearities
in the boundary conditions, in this case, a non-linear spring attached at the free end of the beam.

1. INTRODUCTION

The concept of normal modes of motion (Courant and Hilbert, 1961) is well developed for
a wide class of dynamical systems described by linear ordinary or partial differential
equations with constant coefficients. A normal mode for a conservative, non-gyroscopic
system can be defined as a motion for which the ratios amongst the generalized coordinates
are independent of time, Such a normal mode motion is synchronous and constitutes a
standing wave. Each normal mode has associated with it a mode shape, defined by an
eigenfunction (or an eigenvector), and a corresponding natural frequency, defined by the
associated eigenvalue, For non-conservative and/or gyroscopic systems, normal modes of
motion also exist, although the situation is not so simple, since the modes are typically
traveling waves. For nearly all such linear systems, the dynamics of an individual normal
mode is described by a second-order linear model oscillator which is uncoupled from all
other modal oscillators. Furthermore, a general motion can be written as a linear com­
bination of these normal modes. For non-linear systems, such a principle of superposition
does not hold. However, it is still possible to define normal modes for non-linear systems,
and much work has been done in the case of systems with a finite number of degrees of
freedom (Rosenberg, 1966). However, until very recently, a normal mode formulation for
continuous, infinite degree of freedom non-linear systems has been lackling. The purpose
of this paper is to use the methodology recently developed by Pierre and Shaw (1992) and
Shaw and Pierre (1993, 1994) to investigate the non-linear normal modes of a common
structural system-the cantilever beam with geometric non-linearities arising from large
deformations. The work presented here also demonstrates how the method developed by
Shaw and Pierre (1993) can be extended to handle non-linear inertia terms.

The main feature of the method presented by Pierre and Shaw (1991) and Shaw and
Pierre (1993, 1994) and adopted here is that normal modes are described by two-dimensional
invariant manifolds in the phase space of the non-linear system. These manifolds are simply
curved surfaces, tangent to the eigenspaces of the linearized system, which can be defined
for a wide class of problems, including those with damping and/or gyroscopic terms. The
equations of motion restricted to these manifolds are then used to generate the non-linear
oscillators which describe the dynamics of the non-linear normal modes. This method
reduces to an equivalent of Rosenberg's method in the case of conservative systems.

Previous investigations on the topic of non-linear normal modes have been mostly
limited to finite-dimensional conservative systems (Rosenberg, 1966; Rand, 1974; Vakakis,
1990). Only a few efforts related to non-linear continuous systems have appeared in the
literature (Benamar et al., 1991; Bennouna and White, 1984; Szemplinska, 1990) and these
are restricted to assumptions of standing-wave, time-harmonic motions of conservative
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systems. The methodology chosen here differs in that it may be applied to non-conservative
and/or gyroscopic systems and, more importantly, it does not require one to assume a time­
harmonic motion. Rather, the (amplitude-dependent) mode shapes are first determined,
and then the dynamics of the normal mode are obtained from a non-linear oscillator
equation. Moreover, the approach is based on a non-local formulation, and it does not
require a series representation of the mode shapes at the outset of the solution procedure,
as do the methods found in Benamar et al. (1991), Bennouna and White (1984) and
Szemplinska (1990). However, it must be admitted that, for many problems, the only
practical solution procedure is local in nature and is based on the form of an asymptotic
series, but this assumption is by no means required at the outset of the procedure. In
addition, the present methodology allows for the separation of the temporal and spatial
behaviors in such a manner that the system changes its deflection shape in an amplitude­
dependent manner during a given motion. Previous methods fixed the deflection shape and
allowed only for the amplitude to be time dependent. In summary, the methodology adopted
here represents a formal, systematic means of defining and constructing normal modes for
non-linear systems, and it is based on first principles from the theory of dynamical systems.

This paper is organized as follows. Section 2 provides a description of the general
approach for the class of problems to be investigated. In the following two sections, two
examples are used to demonstrate the technique. Section 3 describes the analysis and the
results for the non-linear normal modes oflarge amplitude vibrations of a cantilever beam.
The normal modes of a linear cantilever beam with a non-linear spring attached to its free
ends are analyzed in Section 4. In Section 5, the convergence properties of the non-linear
normal mode solutions are examined. The paper closes with a conclusion in Section 6.

2. THE GENERAL NORMAL MODE METHODOLOGY

The non-linear normal mode formulation is developed for the one-dimensional
vibration of one-dimensional continuous systems. It extends previous work (Shaw and
Pierre, 1994) in two ways. First, the method developed here is able to handle non-linear
inertia terms in a consistent manner. Second, one of the two examples treated in this work
deals with "intrinsic" non-linearities which arise from finite deformations, whereas all
previous research has dealt with "external" sources of non-linearity, such as attached non­
linear elements.

Consider the vibration of a one-dimensional structural system which occupies a closed
subset n of IR (e.g., a beam or a string). Material points in this object are labeled by the
independent spatial variable s, typically related to the undeformed configuration of the
system or to an arc-length coordinate fixed to the neutral axis of an inextensibe beam, and
t is taken to be the time variable. Let u(s, t) and v(s, t) denote the displacement and velocity
of the material point SEn at time t, respectively. The free vibration of this system can be
described by the following first-order equations of motion

uJs, t) = 1'(s, t) }
on (n-an)

M(u(s, t), v(s, t), VI(S, t» = L(u(s, t), v(s, t» + N(u(s, t), v(s, t»)

with the following boundary conditions

B(u(s, t), v(s, t» = 0 on an,

(I)

(2)

where an represents the boundary of the domain n, and a subscript following a comma
denotes a partial derivative with respect to the corresponding variable. Since the dependence
of the functions u and v on the independent variables sand t is often clear, u(s, t) and v(s, t)
will be replaced by u and v when no confusion can arise. Here M(u, v, vJ is an inertia
operator, possibly non-linear, which operates linearly on the acceleration V. I and is of
arbitrary order in the space variable, L(u, v) and N(u, v) are linear and non-linear spatial
stiffness operators, respectively, and B(u, v) denotes the (vector) spatial boundary condition
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operator on on. Without loss of generality, the equilibrium state of the system is assumed
to be (u, v) = (0,0).

Before proceeding to define the normal modes of motion for such a non-linear system,
consider the linearized system associated with eqn (1), whose dynamics are governed by

u,,(s, t) = v(s, t) }
on (n-on),

MI(vAs, t)) = L(u(s, t), v(s, t))
(3)

where MI(vAs, t)) denotes the linearized version of the inertial operator M(u, v, v,,). The
boundary condition (2) becomes

B,(u, v) = ° on on. (4)

Such a linear system typically possess a set of special solutions called natural modes, in
which the dynamics of the entire system can be represented by a lower-order, linear system.
In vibration applications, these single-mode dynamical systems are governed by ordinary
differential equations of second order in time. Each such mode has associated with it an
eigenvalue, which contains information about the frequency and the decay rate of the modal
motion, and an eigenfunction which describes the configuration of the entire system as it
undergoes a purely single mode motion. These natural modes have an arbitrary constant
associated with them, and when they are normalized in some manner they are referred to
as normal modes. These modes have a special invariance property which can be stated as
follows: If the system is unforced and is started in a spatial configuration comprised of a
single mode, it will stay in that mode for all time, and no other modes will become active.
In terms of the system's phase space, such a motion occurs on a two-dimensional subspace
which is invariant. For linear systems, these subspaces are two-dimensional planes, and a
general motion can be written as a linear combination of the normal modes motions; this
is the principle of superposition.

Only some of these ideas can be generalized to non-linear systems, and, in particular,
there is no hope of obtaining a superposition principle. However, the concept of a normal
mode motion occurring on an invariant two-dimensional subspace can be extended. These
subspaces are not generally planar, but curved, and are referred to as the non-linear normal
mode manifolds. They contain the information about how the system displacement and
velocity fields are distributed in a single-mode motion and, because these subspaces are not
flat, the non-linear mode shapes are amplitude dependent. Furthermore, motions on these
manifolds are governed by non-linear oscillators.

The definition of a normal mode motion based on invariant manifolds is as follows
(Shaw and Pierre, 1992, 1993).

Definition. A normal mode motion for a non-linear autonomous system [eqns (1) and
(2)] is a motion which takes place on a two-dimensional invariant manifold in the phase
space of the system. This manifold has the following properties: (1) it passes through the
equilibrium point (u, v) = (0,0), and (2), it is tangent to the eigenspace of the associated
linearized system [eqns (3) and (4)] at (u,v) = (0,0).

The main characteristic of a normal motion is that the response of the entire system
can be described, through the amplitude-dependent mode shape, by the response of a single
point on the structure, denoted here as so. This can be stated in mathematical terms as
follows: In some neighborhood of the equilibrium point, the displacement and velocity
fields can be expressed by

u(s, t) = U(uo(t), vo(t), s, so)

v(s, t) = V(uo(t), vo(t), s, so), (5)

where uo(t) = u(so, t) and vo(t) = v(so, t) denote, respectively, the displacement and velocity
of the point So E n as functions of time. In order to be valid, U and V must also satisfy the
boundary conditions, i.e., B(U, V) = °on on. It should be noted that eqn (5) can be
considered as a constraint condition which relates the structure's displacement and velocity
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fields, u and v, to Uo and Vo when the system is undergoing a normal mode motion. Also,
V and V reduce to linear functions of Uo and Vo when linearized, recapturing the normal
modes for the linearized system in a rather unusual form. Therefore, in general there are
as many solutions for Vand Vas there are linear normal modes for the system. Moreover.
based on this formulation, the following identities must hold at s = So

V(uo(t), vo(l), so, so) = uo(t)

V(uo(t), vo(t), so, so) = vo(t). (6)

Conditions which ensure that these manifolds are invariant for the equation of motion
are now derived, and from these a solution strategy for obtaining approximations of Vand
V is developed. The approach described here is very similar to that used in the construction
of center manifolds (Carr, 1981). The main feature of this construction process is to
eliminate the time dependency of the problem in order to obtain equations for V and V,
from which geometric structure of the manifolds in the phase space can be determined.

A two-dimensional manifold must be parameterized by two independent coordinates
and it is quite natural to use the variables Uo and Vo. This results in equations describing
the invariant manifolds given by V and V in terms of Uo and Vo. Once the manifolds are
determined, the dynamics on them are obtained by confining the equations of motion to
these manifolds. The resulting modal oscillators are then used to describe the dynamics of
the material points = SoEn, from which the response of the entire system can be determined
from V and V.

The construction process begins by taking a time derivative of eqn (6), as follows:

av (av) (av)-= - Uo + - Vo
at auo ' avo'

av (av) (av)-= - Uo + - Vo·
at auo' avo'

(7)

The constraint condition [eqn (5)] is then enforced everywhere in the equation of motion
(1) by replacing u by V, v by V, and U,t and V,t by eqn (7), including the boundary conditions.
This yields

(~~)uo, + (:~)vo, = V )
on (n-an)

( av av)M V, V, ~ uo, +~ vo, = L(V, V)+N(V, V)

with boundary conditions

B(V, V) = 0 on an.

(8)

(9)

In order to eliminate the time derivatives from these equations, the substitutions
Uo (t) = vo(t) and Vo (t) = Fo(1) are used, where Fo is obtained by a procedure described
subsequently. The re'~u1ts are

au GV
-~vo+ -Fo = V
auo avo

(
av au)M V, V, -vo+ ~- F o = L(U, V)+N(V, V).
GUo uVo

( 10)

These represent a pair of semi-linear, hyperbolic, partial differential equations. Note that
eqns (8) and (9) are valid in a non-local sense, since they are obtained by substituting
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condition (5) into the original equations ofmotion with the only assumption that the system
vibrates in a normal mode motion. The only difficulties at this point are that the functional
form for U and V given in eqn (5) may not be valid globally (since the manifold may bend
back on itself such that it is not single-valued in terms of Uo and vo) and that these equations
are extremely difficult to solve in the general case. However, local solutions can be obtained
in the form of asymptotic series in Uo and Vo if the non-linearities are smooth enough, and
the procedure given below allows one to generate these approximate solutions in a systematic
manner. If the "global" solution of eqn (10) can be obtained, then the range of validity for
these manifolds and their attendant dynamics need not be limited.

The non-linear oscillator is obtained by substituting (U, V) for (u, v) in the equations·
of motion (1) and evaluating these at s = ao. This results in

uo, = Vo

(
oV OV)IMo(uo,vo,vo) = M U, V, -- vo+ -Fo = [L(U, V)+N(U, V)L~so'
Uo Vo S~So

(11)

Note that Mo(uo, vo, vo) is a linear function of vo, In order to determine Fo, it is required
that

(
oV OV)IM U,V,-vo+--Fo
Uo Vo s~so

be invertible with respect to Vo , and this inverse is denoted by Mr; 1(uo, vo). In other words,
the non-linear modal oscillato~ is assumed to be expressible in the following form

uo, = Vo

(12)

Note that it is not always possible to carry out this inversion explicitly, and in fact, it is
usually impossible to obtain Mr; 1(uo, vo) in closed form. Nevertheless, here it is assumed
that Mr; 1(uo, vo) can be determined in some approximated form (e.g., as a series expansion).
With this assumption, eqn (12) is achieved.

The local solution procedure for obtaining the normal mode manifolds proceeds by
assuming the following asymptotic expansions for U and V

U(uo, vo, s, so) = [a I (s, so)uo(t) +a2(s, so)vo(t)]

+ [a3(s, so)u~(t) +a4(s, so)uo(t)vo(t) +a5(S, so)v~(t)] + ...
V(uo, vo, s, so) = [b 1(s, so)uo(t) +b2(s, so)vo(t)]

+ [b 3(s, so)u~(t) +b4(s, so)uo(t)vo(t) +b 5(s, so)v~(t)] + ... (13)

which corresponds to a non-linear separation of variables. Since So is a free parameter, the
explicit dependence of aj and bj and So will be dropped from this point on. Note that the
mode shapes, as defined by eqn (13), depend on the magnitudes of Uo and vo, because the
relative contribution of each a/s) and b/s) depends on Uo and Vo. This is in contrast with
the more typical methods, which separate temporal and spatial behavior at an earlier stage
[see, for example, Szemplinska (1990)].

The coefficients aj(s) and bj(s) contain the information for the spatial distribution of
the normal mode, while uo(t) and vo(t) govern the time behavior of the normal mode. The
solution method for the a/s)s and b/s)s proceeds by substituting eqn (13) into eqn (1 I),
subsequently expanding, and gathering the coefficients of like-powered terms in Uo and Vo.
This results in a sequence of algebraic-differential equations in the a/s)s and bj(s)s. Apply­
ing this procedure to the boundary conditions (9) yields a sequence of required boundary
conditions for the aj(s)s and b/s)s. Together, these equations and boundary conditions
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form a sequence of boundary-value problems which determine the aj(s) and bj(s) values.
Moreover, by the nature of this expansion process, these boundary-value problems are
uncoupled in sequential order and are linear at all orders except the leading order. As will
be shown below, the equations which represent the terms linear in Uo and Vo recover the
linear normal modes, but in an unusual manner. In fact, these are a countable infinity of
solutions to the linear order problem, and each acts as a "seed" from which a non-linear
normal mode arises.

It is worth noting that the identities given in eqn (7), and the independence of Uo and
Vo require the following conditions to hold for the aj and bi values

al(SO,SO) = 1

a/so,so) = 0, for j;::' 2

b 2(so, so) = 1

b/so,so) = 0, for j =1= 2. (14)

At this point, with a series solution in hand, it is worthwhile to reconsider the inversion
of the inertia operator M. As previously mentioned, M o1 is typically impossible to obtain
in closed form. However, with the assumed series solution for the manifolds [eqn (13»),
M o1 can be properly expressed as an asymptotic series in Uo and Vo. This is accomplished
by substituting eqn (13) into the inertia operator M and evaluating the result as s = so.
This results in

(15)

where mj(uo, vo) is a collection of terms of order v~v~ with k+/ = j. Hence, in some local
neighborhood of the equilibrium state, M oI can be written as

(16)

Note that, as a consequence, the term Fo in eqn (12) can also be expressed in the form of
an asymptotic series.

3. EXAMPLE 1: TRANSVERSE VIBRATION OF A NON-LINEAR CANTILEVER BEAM

In this section the non-linear normal modes for the free, undamped, transverse
vibration of a cantilever beam are constructed. The flexural vibration of the beam is
described by a non-linear partial differential equation which contains both geometric and
inertia non-linearities up to cubic order.

3.1. Equation of motion
The following assumptions are made to derive the equation describing the transverse

vibrations of a cantilever beam: (1) the beam is uniform, inextensible and initially straight,
(2) plane cross-sections remain plane during deformation, (3) the effects of shear defor­
mation and rotary inertia are neglected, and (4) there exists a longitudinal plane ofsymmetry
and the motion of the beam occurs in this plane. Using these assumptions, the equation of
motion is derived using Hamilton's principle.

First, the axial and transverse displacement and velocity fields associated with a general
beam motion are considered, from which the potential energy and kinetic energy are
obtained. Application of Hamilton's principle yields two partial differential equations in
the axial and transverse displacements, which are then reduced to a single differential
equation for the transverse motion by making use of an inextensibility constraint (Crespo
da Silva and Glynn, 1978).
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Fig. 1. (a) Cantilever beam; (b) undeformed and deformed beam element.

Consider an infinitesimal beam segment of undeformed length ds (see Fig. la), where
s is the arc-length as measured from the origin of the fixed frame (0, X, Y). After defor­
mation, the (bending) angle between the neutral axis and the X-axis is given by 0 (see Fig.
Ib). Let a material point located at (s,y) in the undeformed state move to (~,'1). The
position vector r of this point in the deformed state is given as

r = ~i+ '1j = [s+ u, (s, t) - y sin 0] i+ [U2(S, t) +Y cos Olj

= ([s+u,(s,t)]i+u2(s,t)j}+[-ysin(Ji+ycosOj], (17)

where i and j denote the unit vectors along the OX and OY axes, respectively, and the
functions u,(s, t) and U2(S, t) are the displacements of the centroid measured along the X
and Yaxes, respectively. The Green's strain associated with the material point located at
the neutral axis is then given by

(18)

which is obtained by letting y = 0 in eqn (17) and then taking the derivative with respect
to s of the resulting equation. The inextensionality constraint implies no relative elongation
of the neutral axis and hence

(19)

SAS 31: 14-1



1988 S.-R. HSIEH et al.

From the geometrical configuration of the deformed element, the following equation for e
in terms of Ul.s and U2.s can be obtained

tane=~.
I +Ul,s

Therefore, the Lagrangian associated with the elastic motion of the beam is given as

(20)

(21)

where p and EI represent, respectively, the mass density and the flexural stiffness of the
beam. Note that, in eqn (21), the first term represents the kinetic energy, the second term
denotes the potential energy and the last term corresponds to the constraint condition with
Lagrange multiplier I\. (I\. is the longitudinal force acting along the beam).

In evaluating the Lagrangian, eand e,s need to be expressed in terms of u(s, t) and
v(s, t). The following equations are obtained by expanding and differentiating eqn (20) with
respect to s (Crespo da Silva and Glynn, 1978)

(22a)

(22b)

Note that eqn (19) is used in simplifying these two equations.
Applying Hamilton's principle and retaining all non-linear terms up to the cubic order,

the following equations for u,(s, t) and U2(S, t) are obtained

pAUl.1I = [1\.(l+ul.,)+ E1u 2.sssU2.sL

pAU 2.11 = [l\.u2.s-EI(u2.sss+u2.suLJL

subject to the following boundary conditions

UI(O, t) = 0

U2(0, t) = 0

U2.s(0, t) = 0

U2,ss(l, t) = 0

I\.(l +UI.s(l, t» +E1u2.sss(l, t)U2.s(l, t) = 0

I\.U2,s(l, t) - EI(u2.sss (I, t) +U2,s(l, t)U2,ss(l, t) 2) = O.

Moreover, from eqn (23c) we have

(23a)

(23b)

(23c)

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

(25)

which arises essentially from foreshortening effects. Equation (23b) can be integrated once,
using boundary conditions (24[) and eqn (25), yielding

(26)
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Substituting eqns (25) and (26) into eqn (23b), a single equation describing the dynamics
of uz(s, t) is obtained

Equation (27) describes the free transverse vibration ofa slender cantilever beam. It contains
the following features: (I) non-linear inertial term [uz,sU; f~ U~,~ de d<5),IIL and (2) the
geometrical non-linearity £1[uz,s(uz,suz,ss),sL.

By introducing the non-dimensionalized parameters

* - J£1 * _ Uz * - ~
t - t pA14' U - I' s - I'

eqn (27) can be written in the following non-dimensional form

U,"+[U,s(fS I
b

uJde d<5) ] +u,ssss + [u,s(u,su,ss),sL =0,
I Jo ,11 ,s

(28)

where all the asterisks are dropped in order to simplify the notation. With this rescaling
and condition (24f), the boundary conditions associated with this equation simply become

U(O, t) = u,s(O, t) = u,ss(l, t) = u,sss(l, t) = 0. (29)

3,2. Construction of the non-linear normal modes
The process for constructing the normal modes follows that given in Section 2. The

non-linear inertia operator and subsequently VO,t [see eqn (12)] are expanded in terms of Uo

and Vo at the outset, so that the equations for the non-linear normal modes can be set up
in a convenient form. This leads to expressions which contain some terms expanded in Uo

and Vo and some terms still in U and V. This procedure is not inconsistent, since the final
result is obtained by expanding all quantities in terms of Uo and Vo.

The construction procedure for the normal modes begins by expressing the equation
of motion in first-order form

U,t = V

The modal oscillators are obtained by substituting the assumed form for a normal mode
[eqn (13)] into this first-order system and evaluating the resulting equations at s = so. The
result of this calculation is

Uo, = Vo

-[(u.s IS I
b

v,~ de d<5) ] _ 'JI Jo ,s S-So
(31)
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The inertia operator M 0 is to be expanded as

Mo(uo, Vo, vo) = vo, + [ ( V.sff V,~tu.~ d~ db)J~so

= [mo(uo, vo) +m I (uo, vo) +mz(uo, vo) + .. ']vo . (32).,

Note that mo(uo, vo) = 1 for the present case. Also, since only cubic-order non-linear terms
are present, ml(uO,m vo) = O. Substituting the asymptoticforms for V and V [eqn (13)] into
eqn (32) and carrying out the expansion yields the expression of mz(uo, vo)

mz(uo, vo) = [(a'i ff a'lb'z d~ db),U5(t) + (a'z ff a\b'z d~ db),v5(t) l~so

+ [ (a'i ffa'zb'z d~ db )suo(t)vo(t) + (a'z ffa'i b'z d~ db )suo(t)vo(t)l~s" (33)

which is quadratic in Uo and Vo. Here the primes denote derivatives with respect to s. For
this problem mz is sufficient for determining non-linear effects on the mode shapes up to
cubic order. Hence, the required approximation of M oI is

Using this result, the modal oscillators become

Uo = Vo.,

vo, = - [V,ssss +4V,sV,ssV.sss + V,~s + V.:V,ssss +mz V,ssss],~so

- [(V,s IS I
J

V,~ d~ db) ] _ -vo[(V,s IS I
J

(:V) V.~ d~ db).] _ + ...JI Jo ,5 S-50 Jl Jo Uo ,.~ s-.~o

= Fo·

(34)

(35a)

(35b)

Now that VO,I has been obtained, the equations for the geometry of the normal modes can
be set up. This is achieved by using eqn (10) in Section 2, a procedure which eliminates the
time derivatives in the equations of motion restricted to the normal mode manifolds. The
result is

G~)vo +G~)Fo = V,

(:~)vo+ G~)Fo+ [V,sff G~)~ V,~d~ dJ1/0 = - V,ssss- V,~s-4V.sV.s,u.sss

-v.~v.ssss-[v,s IS I
J

(::) V,~d~db]vo-[V.s IS I
J

V,~d~db] .. (36)JI Jo 0 ,~ ,s JI Jo .\

A local approximate solution is obtained by substituting the series form for V and V,
eqn (13), into eqn (36), and expanding in terms of Uo and Vo and collecting the like-powered
terms in uo and Vo. This results in a sequence of algebraic-differential equations in the ajs
and bjs, which are solved below. The boundary conditions associated with these equations
are obtained by applying the same procedure to the boundary condition operators.



This yields

Normal modes for amplitude vibration of a beam

aiO) = aj(O) = aj(1) = aj" (1) = 0, j = 1,2,3, ....

1991

(37)

Carrying out the above procedure and gathering the coefficients of the linear-order
terms in eqn (35) leads to the following equations in a], b l , az, and bz

a';"(so)az(s)+bl(s) = 0

a](s)-bz(s)-az(s)a't(so) = 0

a';"(s)-bz(s)a';"(so) = 0

a't(s)+bj(s)-bza'{'(so) = O.

(38a)

(38b)

(38c)

(38d)

Note that eqn (14) was used to simplify the final form of eqn (38).
These equations are non-linear, but not in a usual manner: the non-linear terms are

quadratic and always involve the product of a function of s and a function evaluated at
s = So' The procedure for obtaining a general solution is not obvious and the following
special property of the system is used to determine the solution. It is observed that for a
non-gyroscopic, conservative system, the displacement and velocity are not coupled and,
therefore, az(s) = bl(s) = O. Hence, eqn (38b) implies that al(s) = b 2(s), and eqn (38c) then
reduces to

(39)

From the construction procedure, it is very clear that a';" (so) is a constant coefficient. This
makes the eqn (39) equivalent to a linear boundary-value problem for the mode shapes of
a linear cantilever beam, in which the eigenvalues apparently depend on the solution
evaluated at s = so' This is not the case, however, since a consistent solution can be obtained
by simply requiring a particular scaling on the eigenfunctions of the system, as follows.

Denoting the linear mode shapes, i.e., the eigenfunctions, by <Pis) (j = 1,2,3, ...), it
can be seen that the solution of a I (s) for eqn (39) is given by

(40)

where

d = cos Aj+cosh Aj
sin Aj +sinh Aj

and Aj are the solutions of

cos Ajcosh Aj + 1 = O.

(41)

(42)

(43)

Equation (43) admits a countable infinity of solutions for Aj' and for each value of Aj, there
is a corresponding solution al(s). This form of the linear mode shapes forms the basis from
which the non-linear normal modes are obtained. Note that eqns (39) and (43) imply
Aj = [a';" (so)] 1/4.

That So cannot be a nodal point for <Pis) is clear from the solution of al(s). This makes
sense because the approach outlined in the previous section breaks down if So is chosen at
a node. Nevertheless, this restriction does not cause any problem, since the choice of So is
free and can be different for different no.mal modes.
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At the quadratic order, six equations are obtained by gathering the coefficients of u~,

UoV o, and v~ from each of the invariance equations (36). After simplification using the
linear-order results and eqn (14), these are given by

b 3(s)+A;a4(s) = 0

2a3(S)-b4(s)+2A;as(s) = 0

a4(s)-b s(s) =0

a;"(s)-al(s)aj"(so)-A;b4(s) = 0

2b3(S)-2A:b5(s)+a:;"(s)-aj(s)a~"(so) = 0

b 4(s)+a';'(s)-aj(s)a'5"(so) = O.

(44a)

(44b)

(44c)

(44d)

(44e)

(44f)

These are linear, homogeneous equations of the algebraic-differential type. An obvious
solution is the trivial solution, and it is easy to see that the trivial solution is indeed the
desired solution, since the non-linear terms must vanish in the absence of the non-linearity.
Therefore

ais) = bis) = 0, for j = 3,4,5. (45)

This is not unexpected since no quadratic non-linearities are present in the system.
At the cubic order, there are eight equations, obtained by gathering coefficients of u~,

u~vo, uov~, and v~ from each of the invariance eqns (39). One obtains, after simplifications
made using the linear and quadratic orders results and eqn (14)

where

b 6(s)+A;a7(s) = 0

3a6(S) -b7(s) -2;":as(s) = 0

2a7(S)-bg(s)-3).;as(s) = 0

as(s) -b9(s) = 0

a:' (s) - a I (s)a~" (so) - 3A;a6(s) + 2A~as(s) = 9 I (a j (s»

n;a7(s)-6A.~a9(s)-a'~"(s)+al(s)a'~"(so) = 0

a's" (s) - n;as(s) +6a6(S) - a j(s)a's" (so) = 92(a I (s»

a'9'(s)-a\(s)a~"(so)+2a7(s)-3A;a9(s)= 0,

(46a)

(46b)

(46c)

(46d)

(46e)

(460

(46g)

(46h)

91 (a, (s)) = A;[a', (s) ff a', (~)2 d~ db1-;..;a1 (s{ (a" (s) f1" a'I(~)2 d~ db}1~,,,

+ a I (s)[a'; (so)] 3 - [a';(sW +4a, (s)a'i (so)a';(so) a';' (so)

- 4a'\(s)a'i(s)a'i' (s) +a I (s)[a'j (so)] 2a,l" (so) - [a'i (s)] 2a ,l" (s) (47a)

g2(a\ (s)) = a j(s{ (a" (s) ffa'l W 2 d~ db)]=>0- [a" (s) ff a',(~)2 d~ dbl· (47b)

Note that the functions g\(a\(s» and 9iaj(s» must be zero at s = so, according to the
solution procedure [eqns (6) and (14)]. The coefficients a7(s) and a9(s) are governed by two
homogeneous differential equations which admit the trivial solution. In turn, this implies
that b 6(s) and bs(s) are also zero. Moreover, b7(s) and b9(s) are related to a6(s) and ages)

by
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b7(s) = 3a6(S) - 2A:as(s)

b9 (s) = as(s)

1993

(48a)

(48b)

from eqns (46b) and (46d). Hence solving for the coefficients a6(s) and as(s) [governed by
eqns (46e) and (46g)] is sufficient to define all of the cubic-order terms. To solve this non­
homogeneous boundary-value problem, one approach is to express the particular solutions
as linear combinations of the linear eigenfunctions 4J j (s), as follows:

N N

a6(s) ~ L h6,4Ji(S), as(s) ~ L h S,4Ji(S).
i~ I i~ I

(49)

Substituting the assumed expansions into eqns (46e) and (46g), and projecting the resulting
equations on to the 4Jis) values yields a set of linear equations in the constants h6, and h Si

Since in practice only a finite number of terms, N, is used to approximate a6(s) and as(s),
a critical issue is the convergence of the approximate solution, eqn (49), as N increased.
For the cantilever beam considered here, the solutions for a6(s) and as(s) obtained following
the procedure above turns out to have very poor convergence properties, due to the fact
that the non-homogeneous terms g\ and g2 cannot be approximated with reasonable
accuracy (say, within 5%) for a reasonable number of terms [say, N = 80 in eqn (49)]. This
is caused by the fact that gl(a\(s» and g2(a\(s» do not satisfy the boundary conditions
associated with the 4Jis) values, as shown clearly in Fig. 2.
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Fig. 2. Plots of functions 9, and 92, for the first mode with So = 0.85.
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In order to achieve improved convergence, a6(s) and as(s) are solved for in the
following alternate way (Gu and Tongue, 1987). First, the coefficients a6 and as are
expressed as

a6(s) = a6(s) +"6(S)

as(s) = as(s) +"s(s), (50)

where "6(S) and "s(s) are simple functions which are chosen to satisfy the non-homogeneous
terms at the boundaries. Substituting eqn (50), into eqns (46e) and (46g) leads to

a'tes) - 3Ana6(S) +2A~as(s) -a l (s)a~' (so) = I, (176, l'Js)

a't(s)-7A:as(s)+6a6(s)-al(s)a'~"(so) = 12("6,"S)

,,'~'(s) = 91(al(s»

,,'t(s) = 92(al(s»,

where

11("6,"S) = 3A:"6(S)-2A~l'Js(S)

12("6' "s) = n:"s(s) -61'J6(S).

And the corresponding boundary conditions become

a/O) = a/CO) = aj(l) = at(l) = O}
"j(O) = ,,/(0) = "j(l) = ,,;"(l) = ° }= 6,8.

(51a)

(51 b)

(Sic)

(Sid)

(52)

(53)

Note that the functions "6 and "s satisfy all the boundary conditions associated with ¢js.
This provides a much better modal convergence for approximate series solutions of a6 and
as, since the non-homogeneous terms II and 12, which are linear combinations of"6 and
l'Js, also satisfy the boundary conditions associated with ¢js. The solution procedure for
a6(s) and as(s) begins by solving for "6(S) and l'Js(s) with boundary conditions (53). This
solution is obtained by integrating eqns (Sic) and (SId) directly four times and choosing
the constants of integration so that the above boundary conditions are satisfied. The
functions 1'J6(S) and "s(s) are plotted in Figs 3(a) and 3(b), respectively, for the first linear
normal modes based on So = 0.85.

Now, the functions a6(s) and as(s) are assumed to take the form

N N

a6(s) = L k 6j¢is), as(s) = L ksj¢is).
i~ 1 j~ 1

(54)

Substituting eqn (54) into eqns (51a) and (Sib), and projecting the resulting equation on
to the ¢j(s)s lead to linear equations for the coefficients k 6j and ks( These equations have
a different form for the cases} = nand} #- n, due to the product terms involving functions
of s and functions of So [al(s)a~'(so) and a1(s)a't(s0)] in egns (51a) and (SIb). Recall that
here n is the non-linear normal mode number and} is the index of the linear eigenfunction
component to the nth non-linear normal mode. The result is
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. j_22:k6. +22~k8. -LtI Aik6i<Pi(SO)/<P,,(SO)] = 11"
for] = n

6k6"-62;ks"- Ltl 2;'ksi<Pi(So)!<Pn(So)] = 12.

1995

(55)

j= 1,2,3, ... , (56)

where the coefficients II and 12 are given by
I }

11 == <II> 4;) (s» == (1 II (116(S), 'lg(S»<Pj(S) ds
J Jo

12; = </2, ePj(S» f 12('16(S), '1s(S»ePj(S) ds (57)
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in which <.,.>represents the usual inner product of square integrable functions over
S = (0,1). Equations (55) and (56) form a set of 2N linear equations in k 6 and kg for

} I

j = 1,2, ... , N. The values of N used to generate the results below are given in Table I.
Table 2 provides the numerical values for k 6 and kg for j = 1,2, ... ,8. Although more
than eight terms were used to obtain a satisf~ctory s~lution for a6 and ag, only the first
eight values for k 6 and kg are presented in Table 2 for the sake of brevity.

The use of th~ altern~te procedure described above to obtain a6(s) and ag(s) resulted
in a large improvement ofthe convergence of the series solution. While the direct application
of Galerkin's method, eqn (49), necessitated the consideration of at least N = 80 terms in
the series expansion to make the error smaller than 5%, the alternate approach, egn (52),
yields an error smaller than 0.01 % for a 40-term series. Moreover, it was necessary to use
an asymptotic approximation of the higher linear mode shapes (for j ~ 10), as described
by Dowell (1984), in order to maintain numerical accuracy for the integrals involved in the
calculation ofII andI2'

Due to the complex nature of the functions involved, it was most convenient to obtain
solutions in a numerical fashion. The solution procedure is summarized as follows. The
linear mode of interest, tPn(s), is obtained by solving eqn (39). A location for the reference
point, So, is then selected for this mode. This defines the solution for al and hence also the
functionsg Iandg2[egn (47b)]. The solutions for '16 and '1g are then determined by performing
the integrals in egns (5Ic) and (5Id) numerically. This yields the functions!1 and!2 in egn
(52), which are projected on to the tP/s) in order to obtain the coefficients II. and 12 [egn
(57)]. The coefficients k 6 and kg are then calculated by solving the linear equation~ (55)
and (56) for j = 1,2,3,: .. , N. Finally, approximate solutions for a6(s) and ag(s) are
obtained by combining the solutions for '16(S), '1g(s), a6(s), and ag(s). Once a6 and ag are
known, b 7 and b 9 are given by eqn (48), and the non-linear mode shapes are then given by
egn (13).

The final form of the approximate nonlinear normal mode shapes are, to cubic order

Un(S, so) = aI(s)uo(t) +[JI k 6;tPj(s) + '16(S) }o(t) 3

+ [jtl kgjtPj(s) +'1g(S) ]uo(t)VO(t)2 + ...

Vn(S,SO) = al(s)vo(t)+b 7(s)uO(t) 2V O(t)+b 9(s)v6(t) + "', (58)

where the subscript n denotes the normal mode number whose linearized counterpart is tPn.
The expressions for b7 (s) and b9(s) are given in terms of a6(s) and ag(s) in eqn (48a) and
are not presented here. Note that in the absence of nonlinearities, the linear mode shapes
are obtained from eqn (58). Before presenting the examples of these non-linear normal
mode results, an important point regarding the range of validity of the asymptotic series
for the normal modes [egn (13)] is discussed.

Table I. Identification of cases for example I

Fundamental mode

n = I

n=2

n = 3

Location of So Number of terms used in a6 and a8(N)

0.85 13
0.60 13
0.30 13

0.60 21
0.50 21
0.40 21

~m 40
~W 40
~W 40
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Table 2. Solutions of cases for example I

1997

I 0.85

1 0.60

1 0.30

2 0.60

2 0.50

2 0.40

3 0.70

3 0.30

3 0.20

k
6

, = -0.5851, kg! = -2.6973 x 10- 3
, k 6 , = 1.2462 x 10-3, kg, = -6.5197x 10-5,

k 6, = -8.0458 x 10- 6 , kg, = 3.0344 x 10-6, k 6, = -1.9914x 10- 6
, kg, = 3.9635 x 10- 1

,

k 6 ,= -2.5640 x 10- 1 , k8,=4.9834xlO- g, k 6,= -4.9480xlO-
g
, kg, = 9.3672 x 10- 9

,

k
6
,= -1.l848xlO- g, kg,=2.2280xlO- 9

, k 68 = -3.4878 x 10-9, k g8 =6.5014x 10-'0

k 6 ! = 5.8967, kg! = 0.1997, k 6, = 6.3563 X10- 3
, kg, = -3.3253 X10- 4

,

k 6, = -4.1037 x 10-5, kg, = 1.5477 x 10-\ k 6, = -1.0157x 10- 5, kg, = 2.0216 x 10- 6,

k 6, = -1.3078 x 10- 6, kg, = 2.5418x 10- 1
, k 6 , = -2.5237 x 10- 1

, kg, = 4.7777 x IO-
g
,

k 6, = -6.0432 X10- 8, kg, = 1.1364x 10- 8, k 6, = - 1.7789 XlO-
g
, k 8, = 3.316Ox 10- 9

k 6! = 1452.73, kg, = 102.484, k 6, = 0.2452, kg, = -1.28258 x 10-',

k 6, = - 1.5828 X10- 3, k 8, = 5.9694 x 10- 4
, k 6 , = -3.9175 X10- 4

, kg, = 7.7971 X10-5,

k 6, = -5.0440 x 10- 5, kg, = 9.8036 x 10- 6
, k 6, = -9.7337 x 10- 6, kg, = 1.8427 x 10- 6,

k 6, = -2.3308 x 10-6, kg, = 4.3829 x 10-" k 6, = -6.8613 x 10- 1
, kg, = 1.2790 x 10- 1

k 6 , = 429.907, kg! = - 1.0897, k 6 , = 12.2334, kg, = -1.5896 X10- 2
,

k 6 ,=2.4975, kg,=-1.4245xI0- 2
, k6,=-0.3085, k8,=1.6122xlO- 3

,

k 6, = -8.2356x 10-3, kg, = 5.4234 x 10-\ k 6, = -1.l234 x 10-\ kg, = 9.4002 x 10-6,

k 6,= -5.3518xlO-', k 8,=3.0362xlO- 6
, k 6,= -l.l644xlO-\ k g,=9.3213xl0- 1

k 6 , = 242.263, kg! = -0.6141, k 6, = 26.5406, kg, = -6.6075 x 10- 3,

k 6, = 1.4074, kg, = -8.0273 x 10- 3, k 6, = -0.1738, kg, = 9.0852 x 10-\

k 6 , = -4.6410 x 10- \ kg, = 3.0562 x 10-\ k 6 , = -6.9871 x 10-" kg, = 5.2972 x 10-6,

k6,=-3.0159xlO-\ k8,=1.711xlO- 6, k6,=-9.2654xlO- 5, kg,=5.2528xlO- 1

k 6 ! = 275.813, kg! = -0.6991, k 6, = 8.8631, kg, = -2.4175 x 10- 3
,

k 6, = 1.6023, kg, = -9.1389 x 10- 3
, k 6, = -0.1979, k 8, = 1.0343 x 10- 3

,

k 6 , = -5.2837x 10- 3
, kg, = 3.4794 x 10- 5, k 6, = -7.9548 x 10- 4

, kg, = 6.0308 x 10- 6,

k 6 , = -3.4335 x 10-\ kg, = 1.9480 X10- 6, k 6, = - 1.0549 X10- 4
, kg, = 5.9802 X10- 1

k., = -5230.98, kg! = 1.3047, k., = -56.2353, kg, = 2.6766 x 10-',

k 6 , = -102.275, k 8, = -1.6056x 10- 2
, k 6, = 8.83156, k 8, = -1.l039x 10- 2

,

k 6,=42.2353, k g,=-3.2464xlO- 3
, k 6,=0.8788, k g,=-6.5958xlO-\

k 6, = 0.3313, k 8, = -2.2028 X10- 4
, k 6, = 5.2080 X10- 2

, kg, = -3.7543 x 10- 5

k 6 ! = 3436.74, kg, = -0.8572, k 6, = 36.9463, kg, = -1.7585 X10- 2
,

k 6, = 101.019, k 8, = -1.4312x 10- 2
, k 6, = -5.8023, kg, = 6.8232 x 10-\

k 6, = -27.7484, kg, = 2.1329 x 10- 3, k 6, = -0.5774, kg, = 4.3334 X10- 4
,

k 6, = -0.2177, k 8, = 1.4472 x 10-" k 6, = -3.4216 X10- 2
, kg, = 2.4665 X10- 5

k 6 , = 6728.56, kg! = - 1.67817, k 6 , = 72.3348, k 8, = -3.4429 X10- 2
,

k 6 ,=21.614, k 8,=-6.62175xlO- 2
, k 6,=-11.3599, k g,=1.3359XIO- 2

,

k 6,=-54.3268, kg,=4.1758xlO- 2
, k6,=-1.l304, kg,=8.484IxlO-\

k 6,= -0.4262, kg, = 2.8334 x 10- 4
, k 6,= -6.6990 x 10- 2

, k 8, =4.8291 xlO- 5

Results obtained showed that different locations of the reference point So may result
in different shapes for the non-linear normal modes. In principle, there is a continuum of
valid values of So (except at the nodes of </>n) and the mode shapes obtained using different
So values should be identical. However, due to the fact that the solutions for the normal
modes are sought in the form of truncated asymptotic series, they are not identical for
various So, but should match closely over some amplitude range. This necessitates the
development of a convergence test for the non-linear mode shapes, which is described in
Section 5.

Normal mode shapes are most easily depicted by representing them at peak amplitudes.
This is possible since the normal mode motions are standing waves, a fact easily seen by
observing that when Uo is zero, Un is zero for all s, and when Vo is zero, Vn is zero for all s.
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This implies that, in a non-linear normal mode motion, as in a linear normal mode
motion, all points on the beam reach their peaks simultaneously and have zero deflection
simultaneously. (This is not true for non-conservative or gyroscopic systems, in which
normal modes are generally traveling waves.) Hence, a mode shape is presented by plotting
the displacement field Un when Vo = 0, corresponding to a beam configuration with zero
velocity and an amplitude of Uo at S = So. Note that for Do = 0 the distortion of the non­
linear mode shape is contained in the a6(s) term, which is made up of contributions from
all the linear modes. The non-linear mode shape is dependent on the amplitude Uo in the
following way. For small amplitudes, IUol « 1, Un is dominated by a,(s)uo(t), the linear
behavior. As the amplitude Uo increases, a6(s)u6(t) comes into play, gradually changing the
mode shape in an amplitude-dependent manner.

The first three linear and non-linear normal mode shapes are compared in Figs 4-6.
Figures 4(a), 5(a), and 6(a) show the comparisons between the lowest three non-linear and
linear modes, in which foreshortening effects are neglected in the linear modes. Figures 4(b),
5(b), and 6(b) show similar plots, but include the purely kinematic foreshortening effects in
both the linear and the non-linear modes. From these figures, the following conclusions
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Fig. 4. Comparison of linear and non-linear normal modes (first mode): (a),Iinear (dashed yne)
without foreshortening, non-linear (solid line) with foreshortening; (b) both lInear and non-Imear

with foreshortening.
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are drawn. The difference between linear and non-linear modes is significant when the
foreshortening effects are not included. However, the linear and non-linear mode shapes
match quite well when the foreshortening effects are included in the linear modes. It is
concluded that, for the cantilever beam, the traditional linear normal modes provide an
excellent approximation to the maximum beam configuration up to the cubic order by
including purely kinematic foreshortening effects.

The construction of these figures is carried out as follows. Each linear and non-linear
normal mode is plotted for a given total strain energy at maximum deflection. Note that
the transverse displacement is described in terms of the arc-length variable s and the time
variable t. As a consequence, the resultant non-linear normal mode manifolds are also
expressed in terms of the arc-length s. Due to foreshortening effects, a conversion between
the undeformed state variable, denoted by x, and the arc-length s is required for plotting
the physical shape of the beam in a normal mode motion. For each normal mode shape,
these two variables are related by the following equation

(59)
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which yields the identity x = s for the linear mode shapes. In comparing the linear and
non-linear mode shapes, non-linear mode shapes are generated by including the effect of
foreshortening according to eqn (59). However, in generating the linear mode shapes, two
approaches are used. The first approach treats the arc-length s as equal to the undeformed
state variable x, i.e., foreshortening is ignored. This is valid only when amplitudes are small.
In the second approach, the effect of foreshortening is included in generating the linear
mode shapes. This is accomplished by simply employing rPn (with an amplitude set by the
strain energy) in place of Un in eqn (59).

The equal strain energy requirement between the linear and non-linear modes is used
to relate their amplitudes in the following way

(60)

The left- and right-hand sides of eqn (60) represent the strain energy of the linear and the
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non-linear normal modes, respectively. For a given amplitude of uo(t), the corresponding
amplitude of the linear mode u/ (evaluated at so) can be found by solving eqn (60).

The corresponding modal oscillators are obtained by substituting the expression for
Un into eqn (28) and evaluating at s = so. This results in the following non-linear second­
order ordinary differential equations for the first three modes

n=l, so=1.00

uo(t)(1 + 1.60u5(t)) + 12.3624uo(t) + 15.43u~(t) + 1.21 uo(t)uo(t) 2 + ... = 0 (61)

n = 2, So = 1.00

uo(t)(1 + 38.75u5(t)) + 485. 52uo(t) -1094.7u~(t) +71.36uo(t)uo(t)2 + ... = 0 (62)

n = 3, So = 1.00

uo(t)(l + 151.67u5(t)) + 3806.5uo(t) - 1.0 x 16uMt) + 819.8uo(t)uo(t) 2 + ... = O. (63)

Here the overdots denote time derivatives. Each of the modal oscillators represents a
conservative single degree offreedom system with a (uo, vo) phase plane comprised ofclosed
orbits. The natural frequencies associated with these modal oscillators are determined by
the method of harmonic balance and are given by

WI = 3.15602+0.06815I uoI 2 + .

W2 = 22.0345-142.22I uoI 2 + .

W3 = 61.6972-3453.70IuoI 2 + , (64)

where IUol denotes the displacement at the corresponding reference point So and W n denotes
the natural frequency associated with the nth non-linear model oscillator. It should be
noted that these non-linear frequencies are identical to those obtained by projecting the
linear modes on to the non-linear equations of motion and computing the frequencies from
the resulting non-linear oscillators [which are different from those given in eqn (63)] (Crespo
da Silva and Glynn, 1978). [One must be careful in making these comparisons since the
scaling of the amplitude is done quite in an unusual way in the present method, cf. eqn
(40).] From these frequencies, it is observed that the non-linear characteristics of the
cantilever beam change from hardening to softening at the second mode. This is caused by
the competition between the inertial and geometrical non-linearities. For the first mode, the
geometrical non-linearity dominates and hence yields hardening cubic non-linearity. For
the higher modes, the inertial non-linearity dominates and yields the softening cubic non­
linearity.

4. EXAMPLE 2: TRANSVERSE VIBRATION OF A LINEAR CANTILEVER BEAM WITH A
NON-LINEAR SPRING ATTACHED AT THE FREE END

The non-linear modes of transverse vibration for a linear cantilever beam with a purely
non-linear spring attached at its free end are considered in this section. The purpose of this
example is to demonstrate the ability of the method to handle problems with discrete non­
linear elements and/or non-linearities in the boundary conditions.
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Fig. 7. Cantilever beam with pure non-linear end spring,

The physical system consists of cantilever beam with a non-linear spring attached at
its free end (Fig. 7). It is assumed that deflections are small and therefore a linear model is
used for the beam. The spring is assumed to be purely non-lin.: 'U, providing a restoring
force which is proportional to the cube of the tip displacement, u(1, t). The equation of
transverse motion for this system is given by

pAU,tt +Elu,ssss =°
with the boundary conditions

U(O, t) = u,s(O, t) = u,ss(l, t) = 0, Elu.sss = -ku 3(l, t),

(65)

(66)

where k denotes the non-linear spring constant. Introducing the dimensionless parameters

* _ JEI * - t:' * _ ~ ,_ ~/2
t - t pA/ 4 ' U - /' s - /' Y - pA '

eqn (65) and the boundary conditions can be rescaled and written in the following dimen­
sionless, first-order form (after dropping all asterisks for notational convenience)

uAs, t) = v(s, t), vAs, t) = - v.sssJs, t)

U(O, t) = u,,(o, t) = u,ss(l, t) = 0, U,sss = -yu 3(1, t).

(67)

(68)

The solution procedure begins by substituting the series expansions for the normal mode
constraint, eqn (13), into eqn (67), expanding in terms of uo(t) and vo(t), and gathering the
coefficients of the like-powered terms in uo(t) and vo(t). This results in a sequence
of algebraic-differential equations describing the coefficients Qj and bi' The boundary
conditions associated with these equations are obtained by applying the same procedure
to eqn (68).

The linear and quadratic parts of this example are identical to those from the first
example, and the same solutions are obtained for coefficients Qj and hj , for j = 1, ... , 5.
Only the results for the cubic order terms are given in detail here. Eight equations arise
from the coefficients of the cubic order. After simplifications have been made using the
results obtained from the linear and quadratic orders, these eight equations are
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b6(s)+A:a7(s) = 0

3a6(S)-b7(s)-2A:a8(S) = 0

2a7(S) -b8(s) - 3A:a9(S) = 0

a8(s)-b9(s) = 0

a~"(s)-a't(sO)a,(S)-3A:a6(S)+2A~a8(S) = 0

a't (S) -a,(s)a~' (so) - n:a7(S) +6a9(S)A~ = °
a't (S) -a,(s)a't (so) - n:a8(S) +6a6(S) = 0

a9"(s)-a,(s)a9"(SO)-3A:a9(S)+2a7(S) = 0,

2003

(69a)

(69b)

(69c)

(69d)

(6ge)

(69f)

(69g)

(69h)

where An denotes the nth eigenvalue associated with the linear cantilever beam and the
subscript n indicates the normal mode under consideration. The boundary conditions
associated with these equations are

a6(0) = a6(0) = a'W) = 0, a~(1) = -yaW)

a/O) = aj(O) = aj(l) = aj"(l) = 0, for j = 7,8,9.

(70a)

(70b)

Note that, by the nature of this system, there are no boundary conditions for coefficient
b/s). The trivial solution for a7(s) and a9(s) satisfies eqns (69f) and (69h) and the associated
boundary conditions. Hence, from eqns (69a) and (69c), b6 (s) and b8(s) are also zero.
Moreover, from eqns (69b) and (69d), b 7 (s) and b 9 (s) can be easily solved for in terms of
a6(s) and a8(s), as follows:

b7(s) = 3a6(S) -2A:a8(s)

b9(s) = a8(s).

(71a)

(71b)

Hence, the coefficients a6(s) and a8(s), as described by eqns (6ge) and (69g), are sufficient
to define the cubic-order terms of the normal modes.

It is important to note that, in this problem, the governing equations for a6(s) and
a8(s) are homogeneous, while their associated boundary conditions are non-homogeneous
[equation (70)]. Thus, in order to solve for a6(s) and a8(s), the problem is first transformed
into a system ofnon-homogeneous equations with homogeneous boundary conditions using
a standard procedure (Gu and Tongue, 1987). Since the non-homogeneity occurs only in
the a6(s) boundary conditions, a new function tl6(S) is defined as follows:

(72)

where '16(S) is to be chosen such that the resultant equations in tl6(S) and a8(s) feature
homogeneous boundary conditions. Substituting eqn (72) into eqns (6ge) and (69g) and
expanding, the following equations are obtained

tl~" (s) - 3Ajtl6(S) + 2AJa8(S) -a] (s)a~'(so) = 3Aj'16(S)

a'8"(S)-nja8(S) +6a6(s)-a] (s)a'g" (so) = -6'16(S)

'1~"(s) = O.

(73a)

(73b)

(73c)

Applying this transformation to eqn (70), the following boundary conditions are obtained

SAS 31: 14-J

tl6(0) = tl'6(0) = tl'~(l) = tl~'(l) =°
a8(0) = a'8(0) = a'8(l) = a~'(l) =°
'16(0) = '16(0) = '1'~(l) = 0, '1'~(l) = -yaW).

(74a)

(74b)

(74c)
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Note that the solution for Yf6(S) is not unique. Here it is chosen to be that corresponding
to the transverse deformation of a cantilever beam subjected to a single concentrated end
load arising from the non-linear restoring force. In other words, Yf6(S) corresponds to the
static solution of a cantilever beam, and is given as

(75)

The functions a6(s) and as(s) are then expressed as a linear combination of the
eigenfunctions as follows:

N N

a6(s) = L: k 6/pj(s), as(s) = I ks/p;(s).
i= 1 i= I

(76)

Substituting eqns (76) into eqns (73a) and (73b) and projecting the resulting equations onto
the <p;(s)s, an infinite set of linear algebraic equations in the coefficients k 6 and k s are
obtained. Again, due to the nature of the terms involving products of funcdons of sJ and
So, these equations take different forms for} = nand} =F n. The equations are

(77a)

6k 6j +(Af-n:)ks/ = -6'16 j, for} =F n

6k6"-6A:k S,,-Ctl kS/!J/So)!¢n(So») = -6'16", for }=n,

(77c)

(77d)

where '16
j

= (Yf6(S),<Pj(s» denotes the component of Yf6(S) projected onto the }th eigen­
function <Pj(s) [eqn (57)]. The coefficients k 6j and k Sj are obtained by solving eqns (77a-d).
The solutions for a6(s) and as(s) are then calculated by combining the solutions of Yf6(S),
'Lk6 <P}(s) and 'Lks<Pj(s) together in eqn (76). The expressions of b7(s) and b9(s) are given

/ /

in terms of a6(s) and as(s) from eqn (71).
Again, due to the complexity of the problem, the solution is obtained numerically. In

the current problem, the solution procedure is similar to that outlined in the previous
example, except for the presence of the non-linear parameter y. The solutions of the non­
linear normal modes are sought for three different So values (see Table 3), and the numerical
values of the first eight coefficients of k 6 and k s are presented in Table 4. The values of N, /

used are given in Table 3.

Table 3. Identification of cases for example 2

Fundamental mode

n=1

n=2

n=3

Location of So Number of terms used in a6 and a,(N)

0.95 IS
0.85 IS
0.75 15

0.50 20
0.40 20
0.30 20

0.70 25
0.30 25
0.20 25
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Table 4. Solutions of cases for example 2

2005

1 0.95

I 0.85

1 0.75

2 0.50

2 0.40

2 0.30

3 0.70

3 0.30

3 0.20

k 6,=0.2055, ks,=-6.9327xIO- 5
, k 6,=4.7915xlO- 4, ks,=-8.3928xIO- 5

,

k 6 , = -6.4884 x 10- 6
, k s, = 1.0600 x 10- 6

, k 6, = 4.3252 x 10- 7
, k s, = -7.0151 X IO- S

,

k 6 , = -5.7703 x IO- s, k s, = 9.3439 x 10- 9
, k 6, = I.I574 x IO- S

, k s, = -1.8732 x 10- 9
,

k.) = -3.0399 x 10- 9, k s, = 4.91911 X 10-'0, k., = 9.6736 x 10-'0, k s, = -1.5652 x 10- 10

k 6 , = 0.3263, k s, = -4.9456 X 10- 5
, k 6, = 7.7353 X 10-4, k s, = -1.3549 X 10-4,

k 6 ] = -1.0475 x 10- 5
, k s, = 1.7113 x 10- 6

, k 6, = 6.9825 x 10- 7
, k s, = -I.I325 x 10- 7

,

k 6 , = -9.3155 X IO- S
, k s, = 1.5085 X IO- S

, k 6, = 1.8685 X IO- S
, k s, = -3.0241 X 10- 9

,

k., = -4.9076 x 10- s, k s) = 7.9413 X 10- 9, k 6, = 1.5617 X 10- 9, k s, = -2.5268 x 10- 10

k.,=0.5632, ksl =5.1724xlO- 5
, k 6,=1.3595xlO-" ks,=-2.3814xlO-',

k 6) = -1.841Ox 10- 5
, k s, = 3.0077 x 10- 6

, k 6, = 1.2272 x 10- 6
, k s, = -1.9905 x 10- 7

,

k 6, = -1.6373 x 10- 7
, k s, = 2.6513 x IO- s, k 6, = 3.2839 x IO- s, k s, = -5.3150x 10- 9

,

k 6 , = -8.6255 x 10- 9
, k s) = 1.3958 x 10- 9

, k 6 , = 2.7448 x 10- 9
, k s, = -4.4411 X 10- 10

k 6 , = -0.4541, k s, = - 1.6013 X 10- 5
, k 6 , = 1.5292 X 10- 2

, k s, = 7.353 X 10- 6,

k 6J = -2.6457 X 10- 3
, k s, = 1.76531 X 10- 5

, k 6, = -4.9827 X 10- 5
, k s, = 2.2797 X 10- 7

,

k., = 5.5013 X 10- 6
, k s, = -2.3519 X IO- S

, k 6• = - 1.0491 X 10- 6
, k s, = 4.3934 X 10- 9 ,

k 6, = 2.7038 X 10- 7
, k s, = - I.I232 X 10- 10, k 6, = -8.5312 x 10- s, k s, = 3.5310 X 10- 10

k 6 , = -0.5170, k s, = -1.8231 X 10- 5
, k 6, = 1.73266 x 10- 2

, k s, = -9.2390 x 10- 6 ,

k 6J = -3.012x 10- 3
, k s, = 2.0098 X 10- 5

, k 6, = -5.6728 x 10-5, k s, = 2.5954 x 10- 7
,

k 6 , = 6.2632 x 10- 6
, k s, = -2.6776 x IO- s, k 6, = -I.I944x 10- 6

, k s, = 5.0018 x 10- 9
,

k 6,= -3.0783 x 10- 7
, k s,= -1.2788 x 10- 9

, k 6,= -9.7127xlO- s, k s, = 4.0200 x 10- 10

k 6 , = - I.I333, k SI = -3.9964 x 10- 5
, k 6, = 3.9334 x 10- 2

, k s, = -5.3441 X 10- 5,

k 6)= -6.6028 x 10- 3
, ks,=4.4057xlO-5, k 6,= -1.2436xlO- 4, k s,=5.6895xlO- 7 ,

k 6, = 1.3730 X 10- 5
, k s, = -5.8698 X IO- S

, k 6, = -2.6183 X 10- 6 , k s, = 1.0965 X IO- S,

k 6, = 6.7481 X 10- 7
, k s, = -2.8032 x 10- 9

, k 6, = -2.I292x 10- 7 , k s, = 8.8124x 10- 10

k 6 , = -0.5708, k s, = -3.2502 x 10- 5
, k 6 , = 1.6139 x 10- 2

, k s, = 3.7653 x 10- 6 ,

k 6J = -2.3224 x 10- 3
, k s,= -3.I193xlO- 7

, k 6,= 8.2808 x 10- 5 , k s,= -1.9889 x 10- 7 ,

k 6,=2.794xlO- 5
, ks,=-2.0557xlO- 7

, k 6,=-1.4966xlO- 5
, ks.=9.019xlO- 9 ,

k6,=3.1626xlO- 6
, k s,= -1.7785 x 10- 9

, k 6,= -9.2817xlO- 7
, ks,=5.0643xlO- 10

k 6 ,=0.3750, ks,=2.1353xlO- 6
, k6,=-I.I060xlO- 2

, k s,=-2.4737xlO- 7 ,

k6,=1.597xlO- 3
, ks,=9.1914xlO- s, k6,=-5.440xlO- 5

, ks,=1.3067xlO- 7,

k 6,=-1.836xlO-" ks,=1.3506 x lO- 7
, k 6,=9.8329xlO-" k s,=-5.9254xlO- 9 ,

k.) = -2.0778 X 10- 6
, k s) = I.I685 X 10- 9

, k 68 = 6.0980 X 10- 7, k s, = -3.3273 X 10- 10

k 6 ,=0.7342, k s,=4.I806xlO- 7
, k 6,=-2.076IxlO- 2

, k s,=-4.8432xlO- 7 ,

k" = 3.1699 x 10- 3, ks) = -4.0401 X 10- 7
, k 6, = - 1.0652 X 10-4, k s, = 2.5583 X 10- 7,

k 6, = -3.5939x 10-4, k s, = 2.64423 X 10- 7
, k 6• = 1.9251 X 10- 5, k s, = - I.I601 X IO- S,

k 6 ) = -4.0680 X 10- 6
, k s, = 2.2876 X 10- 9

, k 6 , = I.I939 x 10-" ks, = -6.5142 X 10- 10

The non-linear normal modes are given by, to cubic order

Un:::::; G, (s) + [t, k 6,cMs) +116(S) ]uo(t)3 + [t, ks,cMs) ]uo(t)VO(t)2+ ...

Vn :::::; G,(s)+b 7 (s)uo(t)2Vo (t)+b 9 (s)V6(t) + "',

(78a)

(78b)

where the subscript n denotes the normal mode under consideration.
The first three linear and non-linear modes are compared in Figs 8-10, based again on

equal strain energy configurations. The comparison is accomplished by taking a constant
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Fig. 8. Comparison of linear and non-linear normal modes (first mode): linear (dashed line),
non-linear (solid line).

value of y, here 1000, and then generating the mode shapes for various values of the tip
displacement. These figures consist of three linear and non-linear mode shapes each, showing
the comparison for tip displacements of 0.01,0.05, and 0.085. Note that, in this example,
the beam is modeled by linear theory and hence foreshortening effects are not included.

From these figures, it is seen that the non-linear spring has exactly the expected
influence on the normal modes. For small amplitudes (Figs 8a, 9a, and lOa) the linear
modes are quite accurate, while for large amplitudes (Figs 8c, 9c, and IOc) significant
distortions are observed for low order modes.

The corresponding non-linear modal oscillators are obtained by substituting the
expressions for Un and Vninto the equations of motion, which are then evaluated at S = So'

This yields the following non-linear second-order ordinary differential equations for the
first three modes
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n = I, So = 0.95

uo(t) + 12.3624uo(t) +3.6977yu~(t) +0.073513yuo(t)UO(t)2 + ... = 0 (79)

n = 2, So = 0.50

uo(t) +485.5189uo(t) + 11.l942yu~(t) + 0.04445yuo(t)uo(t) 2+ ... = 0 (80)

n=3, so=0.70

uo(t) + 3806.55uo(t) + 0.8947yuMt) + 0.OO2447yuo(t)uo(t) 2+ ... = O. (81)

The non-linear frequencies of oscillation associated with these modal oscillators are, to first
non-linear order
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WI = 3.5160+0.4266Yluo/ 2 + .

W2 = 22.0345+0.06808yl uoI 2 + .

W3 = 61.6972+0.0243YI UoI 2 + "',

(82a)

(82b)

(82c)

where W
n

represents the natural frequency associated with the nth non-linear modal oscil­
lator and IUol denotes the tip displacement.

5. CONVERGENCE TESTS FOR THE NON-LINEAR NORMAL MODES

The dynamic variables Uo and Vo are the primary parameters which need to be con­
sidered with regard to convergence. In the second example, considered in Section 4, the
value of Y must also be taken into account, since the magnitude of the non-linearity
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influences the range of convergence. As mentioned in the previous section, normal mode
shapes are most easily depicted by showing them at peak amplitudes. Based on this, the
convergence of the non-linear normal modes is examined by setting the velocity Vo to zero.

A rigorous verification of convergence properties is difficult to perform and therefore
it is examined through the following steps:

1. Various reference material points (so) are first selected.
2. For each so, the corresponding non-linear normal mode is constructed.
3. These forms for the non-linear normal mode are evaluated based on respective Uo

values which, if the mode shapes were exact, would render them identical. (The fact
that different Uo values can lead to a single shape is obvious if one considers a
specific beam mode shape and the role of so.)

4. These shapes are plotted together in order to observe the variation amongst them.

Among these four steps, the first two are straightforward, while a few words should
be given regarding the last two. Note that the non-linear normal modes are determined
based on a particular linear normal mode which has been normalized for different reference
points So [condition (14)]. Based on this observation, the non-linear normal mode shapes
are different in scale for different values of so. A normalization is achieved by selecting a
non-linear normal mode for a specific So as the base mode. The other non-linear normal
modes, based at different So points, are then rescaled by proper selection of Uo values, so
that tl1eir respective reference points So lie on the selected base manifold. In other words,
the selected reference points (the sos) form a sequence of check points along the base non­
linear mode shape. Based on this, the different forms for the non-linear normal mode shapes
are plotted on a single graph. Convergence is then examined by observing the splitting
between the forms of the mode shapes.

For the first example, Uo and Vo are the primary parameters required in examining the
convergence of the non-linear normal mode shapes. One set of figures is used in examining
the convergence between these manifolds, these are generated in the following way. First,
the velocity component Vo is set to be zero. Then, the value of the tip displacement for the
base mode is increased until a considerable difference appears in the plot. Figure II shows
a typical set of convergent shapes (for the first three modes), and Fig. 12 depicts examples
of divergent cases, in which considerable splitting can be observed. This procedure, carried
out for each mode with three values of so, is used to determine the upper amplitude limit
over which the series solution can be trusted.

For the second example, the figures for convergence test are constructed in the same
manner for a fixed value of}'. Figure 13 shows an example set of convergent shapes for the
first three modes, while Fig. 14 shows examples of divergent cases. Note that all the figures
shown in Section 4 are based on these convergence tests and the maximum Uo values used
are chosen to be near the limit values for each mode.

6. CONCLUSIONS

The method used in this study was developed originally to treat finite-dimensional
problems, based on the concept of invariant manifolds for dynamical systems (Shaw and
Pierre, 1992). It was extended to handle infinite-dimensional, i.e., continuous systems in
Shaw and Pierre (1994), but was applied only to systems with "external" non-linear
elements, such as the non-linear spring considered in the second example in this work. The
present work is the first to employ these methods in the study of "intrinsic" non-linearities
which arise purely from large deformation kinematics. In addition, it is shown how the
method can be adapted to handle non-linear inertial operators in the equations of motion.
(In the finite-dimensional case, this presents no difficulties, since one simply inverts a matrix
using series expansions.)

The conclusions drawn from the specific examples treated here are the following. First,
the linear normal modes for cantilever beam represent the actual non-linear normal mode
shapes quite accurately over a significant amplitude range (tip displacements up to appproxi­
mately 50% of the beam length) by simply accounting for the kinematic effects of fore-
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shortening. Thus, it can be concluded that the major source of non-linearity in very flex­
ible beams is kinematic, and not dynamic, in nature. The second example demonstrates that
nonlinearities in boundary conditions can have a significant influence on normal mode
shapes, and that the present method captures the resulting distortion in a systematic manner.

The two examples presented herein further demonstrate the power and utility of the
methodology developed in Shaw and Pierre (1993, 1994) in producing non-linear normal
modes in a systematic manner which is based on fundamental principles of dynamical
systems. It should be noted that the formulation given in Section 2 is quite general, and
although only non-gyroscopic, conservative systems which admit standing wave normal
modes have been considered, the method is well suited to describing normal modes for non­
linear systems which are non-conservative and/or gyroscopic. The reader is referred to the
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Fig. 12. Typical divergent non-linear normal modes (example I): (a) fist mode; (b) second mode;
(c) third mode.

work of Shaw and Pierre (1993, 1994) for examples and plots of some non-linear normal
mode manifolds.

The selection of the reference point So makes the procedure somewhat cumbersome.
To overcome this shortcoming, the authors (Shaw and Pierre, 1994) have modified the
current approach procedure to treat non-linear continuous systems by first applying the
usual Galerkin's procedure, with normal modes as trial functions, to discretize the con­
tinuous system and obtain a set of ordinary differential equations. This set of ordinary
differential equations is then studied by the non-linear normal mode method for discrete
systems (Shaw and Pierre, 1993). This approach can improve the current solution procedure
and avoid several complications, e.g., the selection of So and the convergence test ofthe
series expansions for U and V [eqn (13)].

Finally, it should be pointed out that the method for determining non-linear normal
modes developed here differs in a fundamental way from previous methods used for
continuous systems (see Benamar et aI., 1991; Bennouna and White, 1984; Szemplinska,
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Fig. 13. Typical convergent non-linear normal modes (example 2): (a) firsI mode; (b) second mode;
(c) third mode.

1990). Previous methods separate temporal and spatial behavior at the outset, typically by
eliminating the time dependence using harmonic balance and then solving a non-linear
eigenvalue problem by eigenfunction expansions. This restriction requires that the beam
shape, that is, the relative contribution of each linear mode, be dependent on the peak
amplitude of vibration, but fixed as a function of time for a given motion. The present
method has no such restriction, since the basic formulation [eqn (5)] and its asymptotic
implementation [eqn (13)] allow the shape to be altered during a given motion. This is a
lesser restriction and more natural formulation and results in non-linear mode shapes which
differ from those obtained using previous methods. The fact that both approaches yield
identical results for the estimated frequencies of non-linear oscillation to leading non-linear
order is not surprising-this is a variation of Rayleigh's quotient which states that 0(8)
errors in mode shape estimates lead to error at 0(8 2

) in natural frequencies. This observation
also implies that higher-order frequency approximations will differ. The source of this
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Fig. 14. Typical divergent non-linear normal modes (example 2) : (a) first mode; (b) second mode;
(c) third mode.

difference in the following: The present method does not require any restriction on the
nature of the normal mode motion, other than it be that from a second-order autonomous
system. This motion is determined from the modal oscillators after the mode shapes have
been determined.

Since the invariant manifold approach is quite general and is based on sound principles
of dynamical systems, it yields the correct description of non-linear normal modes.
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